
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2007) 1470–1482

www.elsevier.com/locate/jcp
A multiscale approach to the analysis of magnetic grid
shields and its validation

Oriano Bottauscio a,*, Mario Chiampi b, Alessandra Manzin a,
Paolo Emilio Roccato b, Mauro Zucca a

a Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
b Dipartimento di Ingegneria Elettrica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 22 January 2007; received in revised form 24 April 2007; accepted 12 September 2007
Available online 21 September 2007
Abstract

This paper illustrates the application of the multiple scale expansion theory to the analysis of heterogeneous thin struc-
tures employed for the magnetic field shielding and, in particular, the attention is focused on grid shields. These structures
are conveniently employed in the mitigation of magnetic fields when the thermal dissipation is a severe restriction. The
problem modelling is faced by applying the thin-shell approximation to the Maxwell equations, introducing appropriate
interface conditions between the shield surfaces. Starting from this formulation, a homogenisation technique, based on the
multiple scale expansion theory, is developed in order to replace the heterogeneous structure with an equivalent homog-
enous one. The proposed method enables an efficient analysis of magnetic and pure conductive heterogeneous shields with
a significant decrease of the computational burden. The results are validated by comparison with a standard modelling
approach, when possible, and with experiments developed on specific laboratory set-ups for frequencies up to 2 kHz.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Passive shields are largely employed for the mitigation of low frequency high power magnetic fields. To pur-
sue this strategy, pure conductive or ferromagnetic sheets are arranged to form enclosures around the mag-
netic field sources, giving rise to significant shielding efficiencies in the surrounding area. A typical example
is represented by cable enclosures, which enable a reduction of the magnetic field amplitude up to an order
of magnitude. The main drawback of these solutions is a decrease of the thermal dissipation of the heat gen-
erated by Joule effect in the conductors. To avoid the consequent reduction of the cable ampacity, grid shields
can be employed to limit the temperature increase.
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When standard approaches for electromagnetic field computations are applied to grid shields, two aspects
concur to make the problem modelling arduous: the much reduced thickness of the shields and their fine peri-
odic structure. The first difficulty is conveniently faced by the so-called thin-shell approach, which removes the
three-dimensional screen by introducing suitable interface conditions between its surfaces [1,2]. The advanta-
ges of this technique have been extensively proved in several papers, evidencing its reliability in predicting the
shielding efficiency of open and closed shields [3,4]. For what concerns the second aspect, grid shields exhibit a
periodic structure that can be generated by the multiple repetition of a ‘‘basic cell’’. The geometrical properties
of this basic cell influence the global behaviour of the shield, leading to a typical multiscale problem [5–7].
Being inconceivable to directly solve the problem with heterogeneous grid structures, the analysis can be
advantageously handled by adopting a mathematical homogenization technique, which replaces the heteroge-
neous structure with an equivalent homogeneous one. This method, also suitable for the analysis of composite
material sheets, is found to be able to well reproduce the electromagnetic field behaviour without unacceptable
computational burdens [8].

This paper aims at coupling a homogenization technique, based on the multiple scale expansion theory, to
the thin-shell formulation, in order to analyze the shielding efficiency of pure conductive or ferromagnetic grid
sheets for low frequency magnetic field mitigation. The resulting numerical approach leads to the solution of
an algebraic system composed of Finite Element (FE) relations, describing the interface conditions on the
homogenized shell surface, and Boundary Element (BE) equations, accounting for the field distribution in
the whole three-dimensional domain.

The originality of the mathematical model, described in Section 2, essentially consists in the fact that the
multiple scale expansion theory is employed to directly deduce equivalent values of shield characteristic
parameters. These parameters come from the application of the thin-shell approximation, implicitly involving
the electric and magnetic material properties and also the shield thickness and the supply frequency.

The proposed numerical method is validated, comparing the computed results both with standard calcula-
tions performed on 2-D and 3-D heterogeneous structures (Section 3) and with measurements obtained in lab-
oratory on 3-D grid shields (Section 4). The analysis, extended to pure conductive and ferromagnetic shields,
in the frequency range from 50 Hz to 2 kHz, shows a very good agreement between computations and mea-
surements. For higher frequencies, the discrepancies between measured and computed results increase. This
can be explained taking into considerations that the thin-shell formulation is mainly able to model induced
currents circulating in the shield plane. At the frequency increase, a significant portion of the induced currents
tends to circulate in the shield thickness, affecting the shield efficiency [9].

2. Mathematical model

2.1. Three-dimensional problem

The electromagnetic field covers a three-dimensional open boundary air region, including the source con-
ductors and a thin-shell. The shield surface is identified as domain X � R2, assuming a local coordinate system
s = (x1,x2). Under time-periodic supply conditions, the problem is formulated in the frequency domain,
expressing the field quantities as phasors. Applying the thin-shell approximation, the following interface con-
ditions between the shell faces (a) and (b) are found [1,10]:
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l are the shield conductivity and permeability, x is the angular frequency, i is the imaginary unit, $S is the
surface nabla operator, l0 is the air permeability, H(s) is the external source field and Hm is the reduced
curl-free field, whose tangential component is expressed as the gradient of the scalar potential /. Symbols
(+) and (�) indicate the sum and the difference between the values on sides (a) and (b), i.e.:
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Domain X is assumed to be highly periodic along x1 and x2 directions (Fig. 1). The spatial period Y is
defined as the elementary cell, with a local coordinate system y = s/g = (y1,y2) and area SY. Each cell is com-
posed of an air region (material M1) and a pure conductive or ferromagnetic part (material M2). The assump-
tion of a periodic structure implies that the magnetic permeability l, the electrical conductivity r and the
derived parameters f and n are g-periodic functions: lg(s) = l(s/g), rg(s) = r (s/g), fg(s) = f(s/g) and ng(s) =
n (s/g). The apex g underlines that the corresponding function depends on both the spatial coordinate system
s (‘‘global’’ variation) and the coordinate system y (‘‘local’’ oscillations) defined on the element cell. Thus,
introducing the weak formulation with a test function m, problems (1) and (2) become:
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In these equations the source field H(s), which is obviously independent of the shield periodic structure, is
not space periodic.

When g! 0, that is when the cell number tends to infinite, the solutions of (3) and (4) converge weakly in
H ¼ H1

0ðX; CÞ to the corresponding solutions of the following ‘‘homogenized equations’’:
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which provide the asymptotic behavior of /g(�) and /g(+) [11,12]. In Eqs. (5) and (6) symbol MY represents the
average of the considered quantity on the elementary cell Y. A0 and B0 are, in the general case, 2 · 2 tensors,
whose elements a0

ij and b0
ij are determined, following the energy method, as
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Having denoted by H1
perðY Þ the space of periodic functions in H1ðY Þ, functions vi 2 H1

perðY Þ and
ji 2 H1

perðY Þ are the solutions of the cell problems:
Fig. 1. Scheme of the grid shield with its elementary cell for the 3-D problem.



Fig. 2.
relativ

O. Bottauscio et al. / Journal of Computational Physics 227 (2007) 1470–1482 1473
R
Y

1
r ðrvi þ eiÞ � rvdy ¼ 0 with i ¼ 1; 2 for all v 2 H1

perðY ÞR
Y fðrji þ eiÞ � rvdy ¼ 0 with i ¼ 1; 2 for all v 2 H1

perðY Þ

(
ð9Þ
where e1 = (1,0) and e2 = (0,1) are the unit vectors along y1 and y2 directions. When considering elementary
cells having geometrical symmetry with respect to both coordinate axes (y1 and y2), it results that
a0

21 ¼ a0
12 ¼ 0; b0

21 ¼ b0
12 ¼ 0; a0

11 ¼ a0
22 ¼ 1=r0 and b0

11 ¼ b0
22 ¼ f0. Problems (9) are solved by the finite ele-

ment method using first order shape functions and discretizing the domain Y (elementary cell) into triangles.
An example of the spatial distribution of function v1, obtained for an elementary cell having w/L = 0.5, made
of a pure conductive materials (r = 30 · 106 S/m) is shown in Fig. 2.

It is important to note that, since parameter f is frequency dependent, also the homogenized value f0

depends on frequency.

2.2. Two-dimensional problem

Under 2-D approximation, the shield reduces to a segment lying in the (x1x3)-plane. A spatial periodicity is
assumed on the segment, with an elementary period Y = (�L/2, + L/2) (cell), whose central tract (�w/2, + w/2)
is composed of air (material M1) and the remaining part of material M2. Parameters r, f and n assume the
values rM1, fM1 and nM1 (resp. rM2, fM2 and nM2) in material M1 (resp. M2).

Applying the homogenization process, the terms A0 and MY (1/rn) in Eq. (5) become:
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while the terms B0 and MY(1/f) in Eq. (6) become:
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2.3. Integral equations and algebraic system

The homogenized equations (5) and (6), describing the interface conditions between shell faces (a) and (b),
are discretized introducing a FE mesh on the shield surface (triangular elements), having assumed the
Spatial distribution of function v1 for an elementary cell having a square hole (w/L = 0.5). The electrical conductivity and the
e permeability of material M2 are assumed equal to 30 · 106 S/m and 1, respectively.
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unknowns H ðþÞm;n and H ð�Þm;n constant over each surface element and the unknowns /(+) and /(�) linear on the
same element. The problem is completed by integral equations, describing the field in the open-boundary
air region. For open shields these relationships are expressed by
Fig. 3.
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where W is the Green function and n the outward normal unit vector to X. Similar expressions hold for closed
shields [10]. Integral equation (12) are handled by the BE technique, using the surface discretization employed
for the FE solution of problem equations (5) and (6).

3. Numerical validation

A first validation is carried out by comparing the proposed approach with a standard hybrid FE/BE model,
directly applied to the heterogeneous structure, considering both 2-D and 3-D problems. The numerical solu-
tion of the heterogeneous structure by means of a standard approach requires a fine discretisation of the entire
shield, able to resolve the local discontinuity of the material properties, strongly increasing the number of
unknowns. As a consequence, in the case of 3-D structures, the reference heterogeneous solution provided
by the standard method is available only when the computational burden is acceptable (pure ferromagnetic
shield). In fact, for pure ferromagnetic shields, each finite element introduces approximately two real
unknowns, while for conductive ones, the same element introduces four complex unknowns.

The aim of this analysis is devoted to evaluate the capability of the multiscale approach to reproduce the
magnetic field behaviour in the case of a model problem, assuming idealized properties of the shield. The com-
putation refers to a planar shield (1.2 m · 0.6 m) disposed 0.3 m over a go-and-return conductor system par-
allel to x2 axis. The distance between the conductors is equal to 0.5 m (see Fig. 3). The grid shield, 3 mm thick,
has the structure with square elementary cells presented in Fig. 1 and the origin of the coordinate system
(x1,x2,x3) is located in the shield centre.

In the 2-D simulations, the shield (width equal to 1.2 m) is assumed to be invariant along x2 axis, so that the
periodicity is only along x1 axis. Keeping constant the global shield dimensions, the cell number Nc, the cell
side L and the ratio w/L are varied. Of course, the condition w/L = 1 corresponds to the absence of the shield,
while w/L = 0 identifies a solid shield, i.e. entirely made of material M2. In the considered cases material M2
can be a pure ferromagnetic (lr = 10,000, r = 0) or a pure conductive (lr = 1, r = 30 · 106 S/m) medium. Due
to the problem linearity, the computations have been performed assuming a unity current value.

In the 3-D simulations, the actual length of the shield (0.6 m) is accounted for. In this case, the influence of
the geometrical parameters, controlled by ratio w/L, on the electromagnetic properties is well evidenced in the
diagrams of Fig. 3, which reports the values of the homogenized electrical conductivity (r0) and relative
Values of the homogenized electrical conductivity r0 (for a pure conductive material) and of the relative magnetic permeability l0
r

pure ferromagnetic material) versus ratio w/L, for the considered 3-D structure. The shield arrangement is reported in the box.



O. Bottauscio et al. / Journal of Computational Physics 227 (2007) 1470–1482 1475
magnetic permeability ðl0
r Þ, respectively for the pure conductive and the pure ferromagnetic materials. This

result shows how the presence of holes in the shield structure weakly affects the shielding efficiency for values
of w/L lower than �0.2.

3.1. Pure ferromagnetic shield

For pure ferromagnetic shields, the reference numerical solution given by the standard approach applied to
the heterogeneous shield is available for 2-D and 3-D structures. Having neglected the electrical conductivity,
the analysis is developed under stationary supply conditions.

Under 2-D approximation, the shield structure is actually composed of ferromagnetic strips (material M2)
directed along x2-axis and separated each other by airgaps. This arrangement significantly limits the flow of
magnetic flux along x1 axis, reduces the shielding efficiency with respect to the actual 3-D structures and ampli-
fies the local oscillations of the magnetic field, due to the material discontinuities. In Fig. 4 the magnetic field
distributions computed along x1 axis, at a distance of 0.1 m above the shield surface, are presented for cell
numbers varying from 6 to 24. For a better understanding, the solution obtained with the solid shield is also
reported. These results evidence how the approximation given by the homogenized solution improves at the
increasing of the cell number. The local oscillations, particularly evident for low cell numbers (e.g. Nc = 6), are
obviously neglected by the homogenization approach, which is specific for fine periodic structures.

In the 3-D computations, the agreement between the predictions of the homogenization technique and the
reference results obtained directly considering the heterogeneous structure, is confirmed and even improved, as
reported in Fig. 5. Again the accuracy of the homogenized solution increases when increasing the cell num-
bers, mainly for w/L = 0.875, where a more pronounced influence of the holes is found.

3.2. Pure conductive shield

Preliminary 2-D computations with a 400 Hz supply frequency show how, also for pure conductive shields,
the heterogeneous solution tends to the homogenized one at the increase of Nc. This behavior is well evidenced
in Fig. 6, where the magnetic field is plotted along x1 axis, at a distance of 0.1 m from the shield surface. More-
over, the homogenization technique is able to satisfactorily reproduce the magnetic field, also varying the cell
structure (ratio w/L), as shown by Fig. 7.

The 3-D analysis with homogenized parameters has been used to evaluate the effect of the hole dimensions
on the shielding efficiency. The magnetic field distributions along x1 axis at a distance of 0.2 m from the shield,
presented in Fig. 8, prove that the effect of the holes becomes important only when the ratio w/L approaches
to 1.
Fig. 4. Magnetic field along x1 axis for a 2-D problem with a pure ferromagnetic shield having a variable number of cells with w/L = 0.02.
The results corresponding to different values of Nc have been obtained applying a standard approach directly to the heterogeneous
structure. The values are computed imposing a unity current in the conductors.



Fig. 5. Magnetic field along x1 axis for a 3-D problem with a pure ferromagnetic shield having a variable number of cells with w/L = 0.5
(a) and w/L = 0.875 (b). The results corresponding to different values of Nc have been obtained applying a standard approach directly to
the heterogeneous structure.

Fig. 6. Magnetic field along x1 axis for a 2-D problem with a pure conductive shield having a variable number of cells with w/L = 0.875.
The results corresponding to different values of Nc have been obtained applying a standard approach directly to the heterogeneous
structure.
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The 3-D numerical comparison with a standard solution of the heterogeneous structure has not been per-
formed due to the significant increase of the unknowns in the heterogeneous shield problem. In fact, beside the
above mentioned increase of problem unknowns for each finite element, a finer mesh is also required in order



Fig. 7. Magnetic field along x1 axis for a 2-D problem with a pure conductive shield having 24 cells and variable ratio w/L.

Fig. 8. Magnetic field computed along x1 axis for the considered 3-D structure with a pure conductive shield with variable ratio w/L.
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to well reproduce the strongly non-uniform eddy current distribution. Thus, in this case the validation is
obtained only by comparison with experimental data.

4. Experimental validation

In the experiments the magnetic field is generated by a coil, whose axis is perpendicular to the shield surface
(see Fig. 9). The coil, located at 30 mm from the shield, is supplied by a power amplifier. The laboratory set-up
enables the generation of magnetic fields up to 1 mT in the investigation area, with a frequency ranging from
50 Hz to 2 kHz. The magnetic flux density is measured by means of an inductive field probe, having a sensi-
tivity of 25 nT, with an accuracy of 5%. Different planar 2 m · 1 m grid shields are considered, disposing, in
any case, the field probe at a minimum distance of 95 mm from the shield. Fig. 10 shows the structures of the
ferromagnetic and pure conductive shields employed in the experimental analysis.

4.1. Ferromagnetic grid shield

Each analyzed shield is constituted of a 1.5 mm-thick Fe-C material (electrical conductivity �7.2 · 106 S/m,
maximum relative permeability �1500), with square holes arranged in a periodic way along the shield surface.
As reported in Fig. 10, the two grids are composed of square elementary cells, having the same dimension of
the internal hole (w = 10 mm), but different cell side L (grid step).
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Fig. 10. Scheme of the Fe–C and copper grid shields considered for the experimental validation.

Fig. 9. Scheme of the 3-D grid shield with the coil (horizontal section).
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In the first set of computations and experiments, the dimension of the grid step is L = 15 mm. The corre-
sponding values of the homogenized parameters are reported in Table 1, for two different supply frequencies.
The distribution of the magnetic flux density amplitude along a line corresponding to the coil axis is shown in
Fig. 11a and b, respectively for 50 Hz and 1 kHz supply frequency. A substantially good agreement is found
between experiments and computations, proving the capability of the homogenization approach to deal with
3-D grid shields having ferromagnetic and conductive properties. Some discrepancies between computed and
measured results are found only in close proximity of the shield, where the effects of the shield heterogeneities
become stronger. Similar results are found for a shield having a different grid step (L = 12 mm), as shown in
Fig. 12a and b.
Table 1
Homogenized values for the considered FE–C grid shield

f (Hz) r0 (S/m) f0 (Re, Im) (H) MY (1/rn) (Re, Im) (Xm2) MY(1/f) (Re, Im) (H�1)

50 2.6 · 106 (3.3 · 10�7, �1.3 · 10�7) (6.9 · 10�4, �1.4 · 10�4) (4.7 · 108, 3.1 · 105)
1000 2.6 · 106 (3.5 · 10�8, �1.2 · 10�9) (5.9 · 10�4, �1.7 · 10�4) (4.8 · 108, 6.1 · 107)



Fig. 11. Magnetic flux density amplitude B (values normalized to unity current amplitude I) along a line corresponding to the coil axis, for
a Fe–C shield with L = 15 mm and w = 10 mm, and two values of the supply frequency: (a) 50 Hz, (b) 1 kHz. The field generated by the
source, without shield, and the values obtained with a solid shield are also plotted for comparison.
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The effect of the elementary cell dimensions on the shield efficiency is finally outlined in Fig. 13, making
reference to the shielding factor SF, defined as the ratio Bsource/Bshield, where Bsource is the value of the mag-
netic flux density generated by the source and Bshield is the value reduced by the presence of the shield. The two
curves, computed in a point at 95 mm from the shield, for a supply frequency of 50 Hz and 1 kHz, show the
increase of SF at the increase of the dimension L of the elementary cell, keeping fixed w. Both curves tend to
the limit value provided by a solid shield.

4.2. Conductive grid shield

The grid, whose structure is sketched in Fig. 10, is made of electrolytic copper, with conductivity equal to
58.5 · 106 S/m at 20 �C. As can be noted, this shield, having a non isotropic structure, shows a different behav-
iour along x1 and x2 directions. The comparison between experiments and computations has been performed
for different values of the supply frequency (from 50 Hz to 2 kHz), the frequency being a parameter that
strongly affects the efficiency of pure conductive shields. Fig. 14 reports the distribution of the magnetic flux
density amplitude along the coil axis, for supply frequencies ranging from 500 Hz to 2 kHz. The results
obtained at 50 Hz are omitted, the shield efficiency being negligible because of the reduced volume of conduc-
tive material. The agreement is satisfactory, considering the difficulties encountered in the experiments due to
the increase of the temperature caused by the high Joule losses in the shield. The simulations have been per-
formed using the electrical conductivity reported at the temperature reached by the shield during the experi-
ments (44.5 · 106 S/m at �120 �C).



Fig. 12. Magnetic flux density amplitude B (values normalized to unity current amplitude I) along a line corresponding to the coil axis, for
a Fe–C shield with L = 12 mm and w = 10 mm, and two values of the supply frequency: (a) 50 Hz, (b) 1 kHz. The field generated by the
source, without shield, and the values obtained with a solid shield are also plotted for comparison.

Fig. 13. Shielding factor SF computed at 95 mm from the shield for the considered Fe–C grid shield, varying the dimension L and keeping
fixed the internal dimension w = 10 mm. The horizontal lines represent the results obtained with a solid shield.
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The anisotropy of the grid structure influences the homogenized conductivity r0, whose value at 1.5 kHz
varies from 7.1 · 106 S/m along x1 axis to 1.3 · 106 S/m along x2 axis. As direct consequence the shield
efficiency is affected by the grid orientation. This is well demonstrated by the diagrams of Fig. 15, where a



Fig. 14. Magnetic flux density amplitude B (values normalized to unity current amplitude I) along a line corresponding to the coil axis, for
a copper shield having the structure of Fig. 11. The field generated by the source, without shield, is also plotted for comparison.

Fig. 15. Magnetic flux density amplitude B (values normalized to unity current amplitude I) computed along a line corresponding to the
coil axis, for a copper shield having different orientation of the basic cell. The supply frequency is equal to 1.5 kHz. The field values,
obtained with a solid shield, are also plotted for comparison.
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rotation of the basic cell, with respect to the scheme of Fig. 10, determines an improvement of the shielding
efficiency, considering that the shield length along x2 axis is double with respect to the length along x1 axis.

5. Conclusions

In this paper a numerical model, based on the multiscale expansion theory and on the thin-shell formula-
tion, is developed and applied to the computation of the magnetic field mitigation produced by grid shields,
conveniently employed when thermal dissipation is a severe restriction for the behaviour of the whole system.

The interest towards a modelling approach based on the homogenisation technique is justified by its capa-
bility to reproduce, with a limited computational effort, the shielding performances of complex 3-D grid struc-
tures, reducing the problem to the analysis of an equivalent homogeneous shield. The proposed method has
been validated by comparison with a standard numerical procedure and with experiments performed on spe-
cific laboratory set-ups, considering shields with pure conductive or ferromagnetic properties. The experimen-
tal validation has evidenced that the effectiveness of the approach is good in the frequency range from d.c. to
2 kHz, which covers anyway most of the high power applications.
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